Color

Color or colour (see spelling differences) is the visual perceptual property corresponding in humans to the categories called red, blue, yellow, green and others. Color derives from the spectrum of light (distribution of light power versus wavelength) interacting in the eye with the spectral sensitivities of the light receptors. Color categories and physical specifications of color are also associated with objects, materials, light sources, etc., based on their physical properties such as light absorption, reflection, or emission spectra. By defining a color space, colors can be identified numerically by their coordinates. Because perception of color stems from the varying spectral sensitivity of different types of cone cells in the retina to different parts of the spectrum, colors may be defined and quantified by the degree to which they stimulate these cells. These physical or physiological quantifications of color, however, do not fully explain the psychophysical perception of color appearance. The science of color is sometimes called chromatics, chromatography, colorimetry, or simply color science. It includes the perception of color by the human eye and brain, the origin of color in materials, color theory in art, and the physics of electromagnetic radiation in the visible range (that is, what we commonly refer to simply as light). Electromagnetic radiation is characterized by its wavelength (or frequency) and its intensity. When the wavelength is within the visible spectrum (the range of wavelengths humans can perceive, approximately from 390 nm to 750 nm), it is known as "visible light". Most light sources emit light at many different wavelengths; a source's spectrum is a distribution giving its intensity at each wavelength. Although the spectrum of light arriving at the eye from a given direction determines the color sensation in that direc ion, there are many more possible spectral combinations than color sensations. In fact, one may formally define a color as a class of spectra that give rise to the same color sensation, although such classes would vary widely among different species, and to a lesser extent among individuals within the same species. In each such class the members are called metamers of the color in question. Electromagnetic radiation (EM radiation or EMR) is a form of energy emitted and absorbed by charged particles, which exhibits wave-like behavior as it travels through space. EMR has both electric and magnetic field components, which stand in a fixed ratio of intensity to each other, and which oscillate in phase perpendicular to each other and perpendicular to the direction of energy and wave propagation. In a vacuum, electromagnetic radiation propagates at a characteristic speed, the speed of light. Electromagnetic radiation is a particular form of the more general electromagnetic field (EM field), which is produced by moving charges. Electromagnetic radiation is associated with EM fields that are far enough away from the moving charges that produced them, that absorption of the EM radiation no longer affects the behavior of these moving charges. These two types or behaviors of EM field are sometimes referred to as the near and far field. In this language, EMR is merely another name for the far-field. Charges and currents directly produce the near-field. However, charges and currents produce EMR only indirectlyЧrather, in EMR, both the magnetic and electric fields are produced by changes in the other type of field, not directly by charges and currents. This close relationship causes the electric and magnetic fields in EMR to stand in a fixed ratio of strengths to each other, and to be found in phase, with maxima and nodes in each found at the same places in space.